

AFRL-IF-RS-TR-2005-324
Final Technical Report
September 2005

CREATION AND MODELING OF ADAPTIVE
AGENT SYSTEMS

Massachusetts Institute of Technology

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. K548

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

STINFO FINAL REPORT

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2005-324 has been reviewed and is approved for publication

APPROVED: /s/

JOHN SPINA
Project Engineer

 FOR THE DIRECTOR: /s/

JOSEPH CAMERA, Chief
Information & Intelligence Exploitation Division
Information Directorate

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
SEPTEMBER 2005

3. REPORT TYPE AND DATES COVERED
Final Sep 00 – Oct 04

4. TITLE AND SUBTITLE
CREATION AND MODELING OF ADAPTIVE AGENT SYSTEMS

6. AUTHOR(S)
Oliver G. Selfridge and
Wallace Feurzeig

5. FUNDING NUMBERS
C - F30602-00-C-0216
PE - 62301E
PR - TASK
TA - 00
WU - 11

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Massachusetts Institute of Technology
545 Technology Square, NE 43-824
Cambridge Massachusetts 02139

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Defense Advanced Research Projects Agency AFRL/IFED
3701 North Fairfax Drive 525 Brooks Road
Arlington Virginia 22203-1714 Rome New York 13441-4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2005-324

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: John Spina/IFED/(315) 330-4032/ John.Spina@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
This project was dedicated to the development of multi-agent systems with nontrivial capabilities for adaptation and
control in complex operational environments. The agents in such systems are based on control structures and
processes that are inherently purpose-driven. The basic building blocks underlying the operation of purpose-driven
agent systems are Elementary Adaptive Modules. EAMs have six elements: a purpose, an action, an action target, an
activation, an evaluation function, and a set of control variables. EAMs can be passive or active. Passive EAMs, like
servomechanisms, act in response to stimuli that are triggered in their external environment. Active EAMs, like hill-
climbers, initiate probes in the outside world, evaluate the response, and change their behavior accordingly. EAM-based
agents are cascaded to form multi-level systems whose control structures generate goal-oriented behaviors with greatly
enhanced capabilities for adaptation and learning.

15. NUMBER OF PAGES
24

14. SUBJECT TERMS
Multi-Agent System, Purpose-Driven Agent Systems, Elementary Adaptive Modules

16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

 i

Table of Contents

Executive Summary .. 1
Introduction... 2
Key Ideas .. 3
Intelligent Traffic Control Application... 5
UAV Surveillance Application ... 7
Agent Learning of Control Algorithms... 12
Parameter Values .. 18
Fixed Strategy ... 18

 ii

List of Figures

FIGURE 1. LEVELS OF AGENT ADAPTATION AND LEARNING ... 4
FIGURE 2. SCREEN SHOT OF UAV SURVEILLANCE SCENARIO... 7
FIGURE 3. THE MULTI-LEVEL EAM CONTROL STRUCTURE IN A UAV AGENT SYSTEM 9
FIGURE 4. EAM HEADING CONTROL: ACTION AND EVALUATION.. 10
FIGURE 5. EAM-BASED UAV ARCHITECTURE ... 11
FIGURE 6. OFFLINE LEARNING ARCHITECTURE... 12
FIGURE 7. ONLINE LEARNING (LEARNING-WHILE-DOING) ARCHITECTURE ... 15

 iii

Acknowledgments

BBN software developer Brett Benyo implemented the EAM agent software used in the
applications and made major contributions to their design. BBN senior scientist David
Montana designed and applied the genetic programming methodology to the offline and
online UAV learning developments. MIT graduate student Jacky Mallett designed and
conducted several of the experiments on EAM-based intelligent traffic light agents.

 1

Executive Summary

This project was dedicated to the development of multi-agent systems with nontrivial
capabilities for adaptation and control in complex operational environments. The agents
in such systems are based on control structures and processes that are inherently purpose-
driven. The basic building blocks underlying the operation of purpose-driven agent
systems are Elementary Adaptive Modules. EAMs have six elements: a purpose, an
action, an action target, an activation, an evaluation function, and a set of control
variables. EAMs can be passive or active. Passive EAMs, like servomechanisms, act in
response to stimuli that are triggered in their external environment. Active EAMs, like
hill-climbers, initiate probes in the outside world, evaluate the response, and change their
behavior accordingly. EAM-based agents are cascaded to form multi-level systems
whose control structures generate goal-oriented behaviors with greatly enhanced
capabilities for adaptation and learning.
During the initial phase of the project, we constructed a basic set of elementary adaptive
modules, including hill-climbers and servomechanisms, both singly and in combination.
We demonstrated their capabilities for adaptive control in two trial applications calling
for real-time adaptation: pole balancing, a manual skill task, and tracking a signal through
noise, a complex signal filtering task. During the middle phase of the project, we
implemented the first EAM-based multi-agent system, a versatile system for traffic light
control in a complex and rapidly changing environment. The simulation showed that the
behavior of complex traffic flows can be effectively controlled by continuously adapting
algorithms to achieve purposes such as minimizing the average vehicle delay time.

During the last phase of the project, we developed an EAM-based multi-agent system for
Unmanned Aerial Vehicle (UAV) surveillance in complex, dynamic, and uncertain
operational environments. The UAV agents were multi-level hierarchical EAM
structures. UAV sensors sought to detect targets and provide bearing and signal strength.
UAV agents continually evaluated their performance in relation to their purposes and
took appropriate actions. The UAV surveillance simulation included multiple clusters of
targets, some with unknown locations. The simulation environment included objects that
the UAVs were not programmed to handle in advance, such as winds that could push
UAVs off course and hostile targets such as SAMs that could down the UAVs. Higher-
level agents coordinated the collaborative operation of groups of individual UAV agents.
The UAV agents demonstrated sophisticated target surveillance capabilities. They
adapted their behavior and responded effectively in dynamically changing situations.

During the final year of the project, we integrated the use of genetic programming (GP)
methods in the run-time simulation to support both off-line and on-line learning during
the surveillance simulation. The GP learning approach demonstrated a capability for

 2

generating new and improved control behaviors, resulting in further enhancement of
UAV adaptive control performance. The software and documentation developed in the
project is in our project Website, http://omar.bbn.com/MIT/AdaptiveAgents/.

Introduction

The goal of this project was to develop and apply a software technology for creating and
modeling agent systems with strong capabilities for adaptation and learning, so as to
enable agents to address new circumstances and changing needs while performing
complex tasks. The idea behind such agents is that they take responsibility to try and
satisfy some purpose. Agents, in this conception, are inherently purpose-driven entities.
Their actions are guided by their purposes rather than by fixed condition-action rules.
They must operate in uncertain environments and respond to unanticipated contingencies;
thus they need to be inherently adaptive. They are essentially different from current agent
systems, which incorporate pre-defined responses to pre-determined external stimuli.

We developed elementary adaptive controls as the basic constituents of agent structures
in software systems for accomplishing real-life tasks. In our model, agents are quasi-
autonomous objects—they are entities dealing with other agents; but within each agent
there are sub-agents that undertake the control of lower sub-agents, all the way down to
the control of external actions. In this view, agents are quasi-autonomous entities capable
of dealing with other agents as well as the outside world. The basic elements of these
agent structures are adaptive controls with explicitly embedded purposes. In our design,
agents are constructs whose constituents are elementary adaptive modules (EAMs) such
as servomechanisms and hill-climbers. These atomic building blocks can be cascaded to
form multi-level systems in order to generate sophisticated goal-oriented behaviors with
extensible capabilities for adaptation and learning. Purpose, adaptation, and learning
cannot be added as afterthoughts, but must be embedded in the core of every module.

The purpose structure in an agent incorporates an evaluation function that enables it to
tell whether a change is beneficial or not. Setting that evaluation function is an essential
aspect of adaptive control. In general, an agent or an adaptive unit within an agent is
primarily controlled by a user or another agent setting (or modifying) that function. The
units have other control elements as well, e.g., parameters such as step size, thresholds
for responses, and gains. Typically, these change much less rapidly and frequently than
the explicit purposes.

Within each agent there are sub-agents that undertake the control of lower level agents,
all the way down to the control of external actions. At every level each agent or agent
structure is undertaking to express and achieve some goal or purpose by controlling its
own substructures: the primary control operation is in setting or modifying the purposes
of these substructures. These purposes and goals may change with time. They are subject

 3

to the control of higher-level agents and the system users. This approach will ultimately
lead to the analysis of the structural components required to enable the system, on its
own, to construct new agents that can adapt effectively to address new tasks.

No methodology existed for creating purpose-driven adaptive agent systems. Our project
was expressly designed to address this deficiency. Our thesis is that adaptability and
learning cannot be added as afterthoughts, but must be embedded in the core of every
module. The key idea is that at every level each agent or structure is undertaking to
express and achieve some goal or purpose by controlling its own substructures, each with
its own lower level purposes. All these purposes and goals may change with time and the
whole system is subject to continuing adaptation. The purposes and goals are themselves
subject to the control of higher-level agents and the system users themselves.

Key Ideas

The principles underlying our architecture are for the construction and use of purpose-
driven software agents are as follows:

• Each agent consists of an adaptive structure of interacting adaptive components
and a set of fixed software tools. Each operates in a changing environment that
imposes new needs on the agents, and potentially valuable performance benefits.

• Each agent is represented by its purpose, the evaluation function by means of
which it undertakes its continuing adaptation. That purpose will often in effect be
an amalgam of separate purposes or sub-purposes—e.g., to communicate with
other agents, to maintain data and check their consistency with other data, to
suggest and evaluate plans—all running side by side.

• The agent sub-purposes will be processed by substructures consisting themselves
of adapting components, each component being one of a small class of primitive
adapting units (EAMs).

• Each component and substructure is controlled by other ones. The essence of this
control is the expression or modification of the agent’s purpose or evaluation
function at the appropriate level.

• Initially, human users will build, run, and modify the agents. Ultimately, however,
the agent system itself will generate the continuing adaptive processing.

The terms “adaptation” and “learning” are used in varied, and sometimes imprecise and
confusing, ways. Our sense of them is as follows. By adaptation, we mean the ability to
change behaviors in response to the environment. By learning, we mean the ability to
develop new behaviors in response to the environment. We distinguish four levels of
agent adaptation and learning, along the lines illustrated in the following figure.

 4

Level 4: Learning-While-Doing (Online Learning of Adaptive Behaviors)
• Automatically develop new behaviors while performing task
• Requires ability to rapidly find new behaviors suited to new circumstances

Level 3: Offline Learning of Online Adaptations
• Automatically develop new behaviors while not performing task, using

experience gained while performing task

Level 2: Purpose-Driven Adaptation (EAM Control Structures)
• Agent behaviors are based on changing and unanticipated sensor inputs, via

internalized, purpose-driven processes

Level 1: Fixed Pre-Programmed Contingent Responses: Baseline Adaptation
• Preset condition-action operation, behaviors are not context-sensitive

Figure 1. Levels of Agent Adaptation and Learning

Level 2 is the starting point of our adaptive agent system development, based on EAM
structures, as described above. The EAM architecture supports context-sensitive agent
control behaviors in response to changes in the operational environment. It enables agents
to adapt their behavior purposefully to address unanticipated situations, e.g., encounters
by UAV agents of hostile targets of unknown type or location.

We describe first, the application of EAM-based agents to the complex task of adaptive
traffic control. Next, we describe the multi-level EAM agent architecture, and the
application of EAM-based agent systems to the UAV military surveillance task. In later
sections, we describe the structure and application of OffLine and OnLine learning
(Levels 3 and 4), which employ Genetic Programming methods to provide additional
enhancements to EAM-based agent adaptation and control capabilities.

 5

Intelligent Traffic Control Application
The purpose of this phase of the work was to explore the behavior of complex traffic
flows in a simulated environment using traffic lights controlled by continuously adapting
algorithms. The active elements of the simulation were injectors, traffic lights and cars.
Cars originated at injectors that were configured to introduce cars at different rates, at
fixed or random intervals. Traffic lights were controlled by an adaptive algorithm that
changed the fixed interval between traffic light changes. Cars were initially modeled as
simple agents with a constant speed, with infinite acceleration and deceleration.

We conducted one set of experiments with EAM-based agents in a traffic simulation
environment developed using the BBN OMAR modeling framework. The simulation
consisted of a set of intersecting roads, with a traffic light agent at each road intersection.
The traffic lights operated with a constant period, during which they switched from green
to red, then back to green. The time during that period when the light change takes place
was a parameter. Each traffic light agent was controlled by an adaptive algorithm. The
agents were elementary control units (EAMs) that incorporated a purpose structure, an
evaluation function, and a set of control variables.
The traffic light agents were assigned the purpose of minimizing the average delay of
cars on the intersecting roads. This delay time was an environment variable that the
agents received as an input. The evaluation function used a hill-climbing approach,
comparing the current average wait to that of the previous cycle. An improvement in
average wait caused the agent to continue modifying the control variable in the same
direction. Conversely, a poorer average wait caused the agent to modify the control
variable in the other direction. The control variable was the fraction of the light's period
during which the light was green for the east/west traffic. The control variables tuned the
evaluation function, and included such things as cycle length (how many light periods
before the evaluation function was run.)

Preliminary simulations showed that a single traffic light can converge to the optimal
solution of allowing the road with the higher traffic rate to have a longer green time.
When traffic rates were changed in the middle of a simulation, the light adapted to the
new rates and modified the green times appropriately.

In another set of experiments, a simple adaptive algorithm was employed initially. As
each car traversed a traffic light, the delay incurred by the car was recorded by the traffic
light. These delays were averaged over a sequence of cars. At the end of each sequence
the total accumulated delay was recorded, and the traffic light randomly changed its light
change interval by ±5 simulation time units. At the end of 10 of these sequences, the
interval corresponding to the lowest aggregate delay was chosen as the base interval for

 6

the next set of sequences. From the traffic light’s perspective, this simple algorithm could
be regarded as a set of experiments on the delay caused by changing its change interval.

The effects of this algorithm were explored in only a few simple configurations,
consisting of up to 3 traffic lights and injectors. This obviously focused more on effects
centered around individual lights rather than the more interesting second and third order
effects that would arise from larger sets of interacting lights and traffic, but was seen as a
necessary first step in understanding the dynamics of the system. In all the simple cases
explored, which included single cross-sections and two traffic lights controlling traffic on
a straight road, this algorithm invariably decreased over time the aggregate delay
experienced by the traffic in the system. Unfortunately, but not unsurprisingly, it almost
invariably did this by minimizing the traffic light interval used by each light, typically to
the smallest value allowed.

The only exceptions to this behavior occurred when regular periodic traffic was
generated, enabling the traffic lights to find a matching cycle which permitted cars to
pass without delay. Finding this matching cycle in the solution space was, however, a
relatively hard task for the lights, since it required them to find not only a matching
interval but also a matching phase offset; and this becomes proportionally harder with a
purely random algorithm when there are two traffic lights on the same road. The other
factor that mitigated against the light finding the correct interval to cause zero delay to
periodic traffic—getting closer to the correct period/phase solution usually increases
rather than decreases the delay caused by the light.

We started looking at more complicated situations with multiple roads and lights, and
more complicated traffic patterns. Further research was also planned for investigating
meta-control agents that controlled the tuning variables of the traffic light agents. The
main areas of interest at this point were the development of adaptive algorithms that
provided a more directed search through the solution space, and investigation of the
behavior of these algorithms in much larger traffic systems, where interactions between
traffic lights become much more important. We were also interested in investigating
adaptive car behavior, requiring more sophisticated handling of the car agents. However,
at this point in the TASK program, around the middle of 2001, we were directed to shift
our area of research to work on the CAHDE (Control and Adaptation of MAS operations
in Heterogeneous Dynamic Environments) Air Corridor Flow Control scenario, and we
began work on developing EAM-based adaptive capabilities in UAV agents.

 7

UAV Surveillance Application

In the UAV surveillance task, EAM-based UAV agents are assigned to search for targets,
flying close enough to get accurate sensor readings of target ID, target bearing, and signal
strength. They continually evaluate their performance in relation to their purposes and
take appropriate actions. UAV agents run under the BBN OMAR agent simulation
environment employing BBN OpenMap geographical software. The environment
includes clusters of multiple targets, some with unknown locations. It also includes
objects that the UAVs were not specifically programmed to handle in advance, such as
winds and hostile targets. Higher-level adaptive agents (manager agents) coordinate and
control the operation of groups of individual UAV agents. The following figure shows a
screen display of a typical scenario in the UAV surveillance environment.

Figure 2. Screen Shot of UAV Surveillance Scenario

In this scenario, a group of 10 UAVs (blue plane icons) is assigned to search an area for
targets (blue and green radar icons), and fly close enough to each one to get an accurate
sensor reading of the target type and status. The UAVs have noisy sensors that can detect
a target and provide the UAV with target signal strength or a target bearing. A hierarchy
of elementary adaptive modules (EAMs) controls each UAV. The goal is for the UAVs to
discover the status of each target in the shortest possible time. The environment contains
objects that the UAVs were not specifically programmed to handle, in advance, such as
winds which can push UAVs off course, moving targets, sensor noise, and hostile targets
that can down UAVs that come within their firing range.

The operation of a UAV agent is directed by a multi-level control structure of EAMs that
interact to provide a variety of adaptive functions. The EAMs are of two major kinds,

 8

servomechanisms and hill-climbers, The archetype of passive EAM systems is the
servomechanism, a system such as the household thermostat that uses a setpoint to
control the gain of a continuous variable. Servos have been widely studied in classical
control theory. Active EAMs initiate changes in their behavior, evaluate the effectiveness
of those changes, and adapt their behavior accordingly. The archetype of active EAM
systems is a hill-climbing process we have termed Run and Twiddle (RT), as shown in E.
coli, a common bacterium found in the human gut, which moves in such a way as to
improve its position with respect to its nutrient. This creature moves, or runs, by means
of a rotating tail that propels it in roughly a straight line. After traveling for a few dozens
of microns, it stops and spins around, or twiddles; and then starts off again in another
direction, mostly at random. The key to its control is a lesson in simplicity itself: if things
get better—detected, say, by an increase in the concentration of the food in its environ-
ment—then it keeps on going. The result is that it approaches the source of the nutrient.
RT is a flexible and powerful adaptation technique with many engineering applications. It
expresses a fundamental practicum of adaptive behavior—keep on doing what works.

Each EAM has six components: a purpose, an action, an action target, an activation, an
evaluation function, and a set of control variables. The following list enumerates several
of the EAMs in a UAV.
• Heading Servo. Activation: periodic. Purpose: minimize heading/signal-bearing

difference. Variables: gain, period.
• Steady Heading RT. Purpose: minimize delta signal bearing. Variables: increment,

period, epsilon. Activation: value triggered: signal-bearing constant (+- epsilon).
• Gain RT. Activation: Periodic Purpose: maximize sensor lock count. Action: set gain

of heading servo. Variables: increment, period.
• Speed servo (throttle). Purpose: match measured-speed set-speed. Error: Function

derived with a GA. Variable: gain.
• Speed RT. Purpose: maximize speed while avoiding overshoots. Activation: signal.

Variables: increment, period. Action: set factor multiplied to set-speed.
• Signal Merge chooser EAM. Activation: periodic. Purpose: maximize identified

targets. Variables: signals received, targets of other UAVs.
• Coordination EAM. Purpose: share useful converged RT data (steady heading, gain,

speed) for target-type, Actions: send converged RT data, listen for, ask for
reinforcement Activation: periodic.

• Threat Warning EAM. Activation: triggered on hostile radar lock. Action: set
heading offset.

 9

• Heading Merge RT. Purpose: adjust heading to minimize time to find target. Action:
combine headings from Heading Servo, Steady Heading RT, and Threat Warning
EAMs. Variables: weighting factors of the three EAM components.

These EAMs are structured to form a multi-level control hierarchy, as shown in the
following figure.

Figure 3. The Multi-Level EAM Control Structure in a UAV Agent System

The joint interactive operation of these EAMs enables UAV agents to behave in versatile
adaptive fashion. Higher-level adaptive agents coordinate and control the operation of
groups of individual UAV agents. For example, there are four different heading EAMs.
The Signal Heading Servo works to minimize the difference between the UAV heading
and signal bearing. The Steady Heading RT works to minimize the signal-bearing delta to
maintain a steady heading. The Threat Warning Servo seeks to direct the heading away
from a detected threat. A higher level EAM, the Heading Merge EAM, continually
evaluates the outputs of the other three heading EAMs and computes a weighted average
to determine the resulting heading. Another higher-level EAM is the Signal Merge
Chooser, which takes as inputs the signals received, headings, and current target locations
of nearby UAVs and tries to maximize the number of identified targets. The base agent, a
management level EAM, can redirect the Signal Merge Chooser’s target priorities.

In a typical scenario, a group of 4 EAM-based UAVs with long-range sensors and optical
imaging sensors was tasked to identify 30 targets, 25 with unknown locations. Each UAV
was controlled by a hierarchy of EAMs such as that shown above. UAVs had long-range
sensors for identifying target type and obtaining readings on signal strength and target

The Structure of EAM-Based UAV Agents

UAV
Agent

Signal
Heading

Servo

Steady
Heading

RT

Speed
Servo

(GA error fn)

Signal
Merge

Altitude
Merge

Signal
Altitude

Servo

Avoid
Ground

Servo

ALTITUDE

SPEED
ALTITUDE

Gain
RT

Speed
Factor

RT

Base
Agent

PURPOSE

 HEADING, CURRENT-TARGET,
SIGNAL STRENGTH (to/from other UAVs)

SPEED FACTOR

Heading
Merge

Threat
Warning

Servo

HEADING

HEADING

GAIN SIGNAL STRENGTH, BEARING

GAIN (to/from other UAVs)

 10

bearing. EAM adaptive heading controls compensated for the effects of winds and
moving targets. The graph in the following figure shows the evaluation made by the
Heading EAMs and the resulting UAV action in the simulation run.

Figure 4. EAM Heading Control: Action and Evaluation

The blue curve shows the UAV heading as directed by the Heading Servo. The slowly
decreasing slope during the first minute shows the UAV continually updating its heading,
because it is veering off course while trying to locate the first target, The red line shows
the effect of the Steady Heading EAM trying to keep the UAV on a straight course by
compensating for a strong crosswind that was driving it off course. Before the Steady
Heading EAM converges, the Heading Servo EAM is forced to continually adjust the
UAV heading (as shown in the decreasing slope of the blue line during the second
minute.) When the heading has converged, the UAV is able to fly straight, as shown in
the constant slope of the blue line (from around the third minute of the flight), after which
it changes its heading to fly toward a second target.

A typical result: without adaptive controls (the baseline Level 1 adaptation described in
Figure 1), the UAVs identified 8 targets (3 in unknown locations) in an average ID time
of 4243 seconds. With EAM-based adaptive controls, the UAVs identified 11 targets (6
in unknown locations) in an average ID time of 2833 seconds. The UAVs with adaptive
controls found twice as many previously unknown targets as the UAVs with non-adaptive
capabilities.

The basic EAM adaptive architecture is depicted in the diagram below. The real world

Main Heading Control

-300

-200

-100

0

100

200

300

400

500

1 14 27 40 53 66 79 92 10
5

11
8

13
1

14
4

15
7

17
0

18
3

19
6

20
9

22
2

23
5

24
8

26
1

27
4

28
7

Time

H
ea

di
ng

Main Heading Steady Heading

 11

UAV environment is represented in the bottom window. A high-fidelity simulation can
substitute for the real world when doing planning rather than controlling actual UAV
operations. The UAV sensors can initiate control behaviors directly. When the sensory
feedback calls for evaluation of possible responses, appropriate high-level control
behaviors are selected from the behavior database to direct the UAV’s action. The UAV
proceeds throughout the run under the action of this control loop.

Figure 5. EAM-Based UAV Architecture

EAM controls provide an effective conceptual framework for adaptive control. Building
on this framework, basic EAM adaptive capabilities can be further enhanced in a
straightforward way. We extended the EAM adaptive architecture by automating a simple
idea—learning from experience. Following UAV surveillance runs, we performed off-
line learning experiments to develop improved control algorithms for enhancing the
UAV’s adaptive capabilities.

 12

Agent Learning of Control Algorithms

EAM-based UAV agents have nontrivial capabilities for adapting their behavior in
response to anticipated contingencies. For example, they can change the settings of their
altitude, speed, heading, or sensor control parameters when the target locations and signal
characteristics actually encountered differ from initially anticipated values. However, the
agents may encounter situations that were not specifically anticipated, such as signal
environments with unusual noise characteristics, or new targets of unknown type. Also,
the loss of UAVs to hostile fire can call for rapid generation of new plans for rerouting
and re-targeting the remaining UAVs.

To address this problem, we applied genetic programming (GP) to enable a UAV to learn
from experience, leading to the generation of more adaptive and responsive control
algorithms (corresponding to Adaptation Levels 3 and 4 in Figure 1.) Our object was to
provide an automated means of developing improved UAV control algorithms for use by
its EAM agents. Moreover, we sought to develop such algorithms “on the fly” in the
course of execution of the UAV task. Genetic programming is a technique for learning
more effective computer programs, such as control algorithms, for accomplishing a task.
It uses a genetic algorithm to search through the space of different computer programs
built from a set of primitives, to find the one currently best suited to a given task.

We began by using GP to improve UAV control algorithms “offline”, after the execution

Figure 6. Offline Learning Architecture

of a surveillance run, to better prepare for UAV operations during subsequent runs in
response to unanticipated changes in the enemy’s capabilities and tactics. Figure 6 shows

 13

our architecture and general approach to off-line learning.

This is a schematic description of the Level 3 architecture. It is an extension of the Level
2 adaptive architecture, which is depicted in the two boxes on the left (a repeat of Figure
5 above.) The real world of the UAV and its environment is depicted in the lower box, as
before. The off-line processing component shown in the box on the right is the new
contribution. The system works as follows. UAV sensors operate through the EAM
control algorithms to determine control behaviors. The feedback from these sensors may
dictate the need for new control behaviors from the UAV database of previously
developed behaviors. To develop new control behaviors, the off-line simulation is run to
test existing behaviors under new conditions that may call for new needs. GP learning
trials are employed to generate improved control algorithms. These are then embedded in
the UAV EAMs for use in subsequent surveillance operations.

New behaviors are learned prior to performing the task and stored in a behavior database.
The UAV can adaptively switch between pre-learned behaviors based on environmental
conditions, but if an effective behavior is not stored, then it must utilize those that it has.
Nevertheless, the UAV can continually improve its control strategy with time by using
experiences gained during one period of task performance to develop new behaviors
offline before the next such period.

As well as improving its adaptive performance offline in this manner, we would like the
UAV to learn to improve its adaptive performance in real-time, while it is performing the
task. We refer to such learning in real-time as online learning or learning-while-doing.
However, genetic algorithms (and other learning algorithms) are often poorly suited for
online learning, because they generally need to try many poor solutions to find a good
one. Such poor behaviors can lead to disastrous effects (such as crashing the UAV!)
Furthermore, testing many potential solutions often requires too long a time. Genetic
programming requires a search through many possible solutions before finding a more
optimal one. Hence, to execute a GP run in a reasonable amount of time requires a
reasonably fast way of evaluating possible solutions.

We therefore implemented a fast, highly streamlined version of the full-scale simulator
used in the earlier work on the project. The full-scale simulator is a high-level richly
instrumented system, serving as a stand-in for the real world. It provides users a testbed
for developing, exercising, and refining the current UAV scenario and operational plan. It
describes the agents’ purpose structures, cognitive functions, and prescribed actions (e.g.,
UAV routing, timing, and targeting.) It includes the best available descriptors of the
hostile entities and the battle environment. It provides user-friendly facilities for
supporting plan development, including a graphic user interface and tools for analysis of
simulation runs. However, the full-scale simulator has a great deal of overhead associated
with display routines, logging of events, and sharing of control between different agents

 14

that the fast simulator does not have. The fast simulator focuses on only that which is
needed for the particular UAV agent for which the control is being learned. This allows
us to evaluate several different control laws per second.

The highly streamlined rapidly executing simulation serves as a continually adapting
“mental model” of the agent task environment. It can be invoked at any time during the
execution of the current scenario. It works like this. As agents encounter unanticipated
situations (surprises and anomalies) in the course of their operations, these are reported to
the mental model. Using the mental model, genetic programming methods evaluate
different possible behaviors in response to the new situations and challenges. The
solutions thus generated are embedded in the agents. The agents are able to apply their
improved behavior during task execution “on the fly” with relatively rapid turnaround.
By decoupling the two simulations, we can see the behavior when the mental model does
not match the physical world and force the UAV to attempt to modify its mental model in
accordance with its observations of the world.

The mental model simulation is several hundred times faster than the high-level
simulation. It incorporates genetic programming algorithms for learning to capture the
experience of the agents. It applies the algorithms, using the mental model, to evaluate
different possible behaviors and generate improved behaviors. These are then
incorporated into the high-level model. This enables UAV agent behaviors to steadily
improve with experience and to adapt with relatively rapid turnaround time. Moreover,
the agents can store learned behaviors for future use in similar situations. Thus, the
architecture supports long-term learning as well as short-term adaptation. Figure 7 is a
schematic diagram of the online learning architecture (Level 4.).

The UAV continually compares the mental model with what it is experiencing via its
sensors, and it updates the model when the model is not consistent with its experience. At
its simplest (as in the experiments described below), this is just an adjustment of certain
parameters of the simulation, but we envision more flexibility in how to adjust the mental
model in the future. Whenever the mental model has changed significantly and there is
not a previously learned strategy matched to the current model, the UAV executes a
genetic-programming learning algorithm to devise new behaviors suited to the current
environment as represented in the current simulation. If the mental model is maintained
as an accurate reflection of environment, the learned behaviors should be effective.

 15

Figure 7. Online Learning (Learning-While-Doing) Architecture

The software used for the genetic programming base was ECJ, a freely available software
package developed and distributed by Sean Luke and associates. ECJ supports a variety
of different chromosome structures. We applied its standard approach to GP, which
utilizes Koza's tree-based chromosome and supporting operators.

The learning algorithm has two main components: the genetic programming
infrastructure and the evaluation function. After describing these, we discuss our
application of the approach, first to learning bearing control and then, to learning the joint
control of bearing and speed.

GP must be customized for a particular problem via the choice of primitives and the
evaluation function. We used the following primitives, some that are generic and some
that are problem-dependent. The number in parentheses indicates the number of
arguments, with zero indicating a terminal, i.e. a leaf in the parse tree of the program:

• CurrentSpeed (0) - the speed of travel of the UAV
• DistanceToTarget (0) - the measured/estimated distance to the closest target
• HeadingError (0) - the (signed) value of the difference between the UAV heading and

the measured bearing to the closest target (used only for bearing control and not speed
control)

• HeadingDifference (0) - the absolute value of HeadingError
• StandardERC (0) - Koza's ephemeral random constant

 16

• Plus (2) – addition
• Minus (2) – subtraction
• Times (2) – multiplication
• Divide (2) - division (entire expression set to zero if divide by zero attempted)
• IfDistanceWithin (3) - if DistanceToTarget is less than the value returned by the first

argument, return the value returned by the second argument, else the value returned
by the third argument

• IfHeadingWithin (3) - similar to IfDistanceWithin except using HeadingDifference
instead of DistanceToTarget

Two critical parameters controlling the performance of the genetic algorithm are
population size and number of generations. For offline learning, where we are willing to
wait a relatively long time to obtain a currently best (or nearly best) solution, we used a
population size of 20,000 and 20 generations (for a total of 400,000 evaluations). This
translates into an overnight run on a standard desktop machine. For online learning,
where we need a fast turnaround, we used only 2% of that number of evaluations.

The performance of a control strategy for a single UAV is measured primarily by how
many targets it can identify in a particular window of time, which we have taken to be
30,000 simulated seconds. The problem is that a single run provides a very noisy estimate
of performance. One source of noise is that a control law can either be particularly well
or particularly badly suited to the specifics of the specific scenario used (where the
scenario consists mainly of the target placement and the initial position and heading of
the UAV). A second source of noise is that, even using the same scenario and control
law, the number of targets identified can vary significantly from run to run. This is due to
a combination of the noise injected into the simulation (e.g., adding random noise onto
the UAV’s measurements of bearing) and the “chaotic” way a UAV discovers targets.
With only a relatively small number of targets detected during a single run (on the order
of 5-15 targets), such noise can be a large problem in terms of robust evaluation.

The solution is to use multiple runs on different scenarios, all generated according to the
same statistical specifications (e.g., specifying the statistical distribution of the targets), to
perform the evaluation of a control law. By averaging over multiple runs, the evaluation
function achieves more statistical significance in its performance measurements.
Furthermore, by using a different scenario for each run, we can eliminate a potential
source of bias in the performance measurement. There is a tradeoff between using more
runs per evaluation, and hence burning more compute time, and using less runs per
evaluation, leading to inaccuracy in performance estimates. We have settled on ten runs
as a standard number of runs per evaluation.

As a preliminary experiment to validate this approach to learning control laws, we
compared the control strategy created by offline learning using genetic programming

 17

with a human-designed control strategy. The human strategy is not “expert” in the sense
that it is not applying sophisticated mathematical analysis or the latest control theory
techniques; however, it was thoughtfully designed to provide a good measuring stick for
“reasonableness”. The procedure was to create ten different scenarios for the mental
model simulation as training data. Using these scenarios, we executed the learning
algorithm to develop strategies for evaluating fitness for the genetic algorithm. We then
created a set of ten other scenarios as test data for the more sophisticated simulation.
Using the test data, we compared the performance of the learned strategy with the
human-designed strategy.

We developed control algorithms for two different agents: the heading control agent and
the speed control agent. The GP chromosome contained two control algorithms, one for
calculating a new heading and one for calculating a new speed. To evaluate a particular
chromosome, we translated each of these control algorithms into a form executable by the
agents and then ran the simulation.

The results generated from the first experiment were as follows:
• The human-designed strategy identified on average 7.2 targets per run on the test

set.
• The GP strategy identified on average12.3 targets per run on the test set (and 16.5

targets per run on the training set).

This provided a clear indication that the GP learning algorithm is effective at learning
control strategies.

The online learning procedure used the same basic learning algorithm as that used in
offline learning. One big difference was the size of the genetic algorithm run in terms of
the number of individuals evaluated. For online learning, a fast turnaround of an
adequate, albeit suboptimal, solution is better than a long run resulting in an optimal set
of control laws. We therefore used a population size of 1,000 and 8 generations, resulting
in a total of 8,000 evaluations. Based on trial-and-error with different values of these
parameters, this was the smallest number of evaluations that would reliably result in a
solution not far from the optimal. (For example, if the optimal set of control laws could
identify on average 17 targets, then this procedure might lead to a set of control laws that
identified 14 or 15.) With a standard desktop machine, the genetic algorithm required
about 7-8 minutes to run, but could run in under a minute with faster hardware.

In further experiments, we employed a scenario in which the radar used to identify the
enemy targets has range either less than or greater than that anticipated in the plan, due to
environmental circumstances. This required the UAV to learn a new strategy that allows
it to fly either closer to, or further from, the targets in order to identify them.

The experimental procedure was as follows. Let Rid denote the identification range.
Offline, we used the mental model with Rid set to value R0 in order to learn a strategy

 18

tuned to this parameter value. Online, we first execute the “real world” simulation ten
times with the parameter Rid set to R1, which is different from R0, and with the strategy
fixed to that learned offline. We averaged the results of the ten runs to evaluate the
performance of the fixed strategy. Next, we again executed the sophisticated simulation
ten times with Rid = R1 but this time with the capability for online learning enabled. When
the UAV determined that Rid was different from what the strategy was designed to
handle, it changed the mental model to the estimated new value of the parameter and
invoked the fast version of the learning algorithm to generate a new strategy. The UAV
then used the newly learned strategy for the remainder of the run, or until it revised the
estimate of the parameter enough that it needed to rerun the learning procedure. (The
parameter estimation procedure would continue to operate after executing the learning
procedure, and its revised estimates would trigger a second round of online learning.)

We performed this procedure for two different situations: the first with R0 = 20 and R1 =
5, and the second with R0 = 5 and R1 = 20 (i.e., the reverse). The numerical performance
results in terms of number of targets identified on average were:

Parameter Values Fixed Strategy Online Learning
R0 = 20, R1 = 5 1.2 7.4
R0 = 5, R1 = 20 8.4 9.9

The change in the value of the identification range produced some interesting qualitative
differences in the learned behavior. For Rid = 20, the UAV could identify the target in a
single pass and then proceed onto the next target. For Rid = 5, because of the minimum
speed constraint, the UAV needed to double back for a second pass to identify a target.

Clearly, the online learning improved performance in these simple test cases. The online
learning process required approximately 450 seconds to execute. Since we were assuming
in the simulation that the learning process would occur within the 100 simulated seconds
of a tick, it is not that far from being real time. With a higher-speed computer, online
learning would be fast enough for real-time operation.

